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Model-Free Analysis of Mixtures by NMR
Using Blind Source Separation
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The concept of blind source separation is described and exam-
ples of its use in 1D and 2D NMR spectroscopy are presented. The
goal of this data processing method is to extract the spectra of
components molecules when only mixtures are available. © 1998

Academic Press
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There are numerous situations in which pure chemical com-
pounds are not available for liquid state analysis by NMR
spectroscopy. Because of this, new techniques which analyze
mixtures need to be developed. Traditional mixture analysis
addresses two main problems: the identification and the quan-
tification of the components present in the mixture. Identifica-
tion proceeds in most cases by matching the mixture’s spectral
information with a library of reference compounds. The ana-
lytical performance is thus strongly dependent on the library’s
content. A problem related to mixture analysis is the identifi-
cation of components from a collection of spectral data of
mixtures with unknown compositions. Such physical mixtures
may be produced by a chromatographic or any other separation
process. It seems intuitively reasonable that if one gets at least
as many linearly independent spectra of mixtures as there are
individual components, then it is possible to separate their
spectra. This communication aims to show how the concept of
blind source separation helps to achieve this goal. Blind source
separation was developed in the context of multisources mul-
tisensors data processing. A set of sensors receives signals
from sources, but with intensities depending on their relative
positions. The data analysis yields the source signals and the
mixing coefficients.

Various approaches to the problem were undertaken. The
difficulty lies in finding a criterion of independence between
the separated signals. The employed criteria are mainly based
on the second- and/or fourth-order signal moments (1). Con-

cepts as such neural networks (2), contrast functions (3, 4),
maximum likelihood (5), and problem deflation (6) were in-
volved in algorithms presenting various advantages as well as
drawbacks. The algorithms are designed to perform either an
adaptative (7) or a block processing. One of these algorithms,
SOBI (second order blind identification), was designed to deal
with temporally correlated signals. It is based on second-order
statistical analysis and has proved to be robust in the context of
noisy, nonstationary signals. Its principle is presented hereaf-
ter; details on performances and theoretical justifications can
be found in reference (8).

Source separation by the SOBI algorithm resorts to proper-
ties of the covariance matrix of time-dependent vector func-
tions. A functionxi(t), 1 # i # m, sampled at timestk (0 # k #
T 2 1, t0 5 0) is represented by a matrixX so thatX ik 5 xi(tk).
The covariance matrixRx(t) is defined by

RX ~t ! 5 E@x~t !x* ~t 1 tt !# [1]

or

@RX ~t !# ij 5
1

T 2 t
O
k50

T212t

xikx*j,k1t [2]

An autocovariance matrixRX(0) is denotedRX. Let C be a
matrix with m columns, andCH its Hermitian conjugate. The
property

RCX ~t ! 5 CRX ~t !CH [3]

will be used to handle covariance matrices.
Source mixing is considered a linear process in which no

propagation lag is introduced:1 To whom correspondence should be addressed.
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y i ~t ! 5 O
j51

n

aij sj ~t ! or Y 5 AS [4]

if n sourcessj are present. Signal mixturesyi are detected by
sensors and noise is introduced in the detected signalsxi. Let X
be the matrix of the measurements,

X 5 Y 1 N or X 5 AS 1 N, [5]

whereN is the noise matrix andA is the mixing matrix. Signal
samples, noise, and mixing coefficients are complex numbers.

Blind source separation consists in findingA andSwith only
X as input. The problem is largely underdetermined. The
definition of X can be rewritten as

x i ~t ! 5 O
j51

n aij

a j
a j sj ~t ! 1 n i ~t ! . [6]

The sources are thus only defined as relative values. A change
of indexesj by permutation does not changeX. There is no
way of labeling the sources unambiguously.

The source separation algorithm SOBI imposes constraints
on the sources and the noise. The power of the sources is
supposed to be normalized. This is not a restriction, as their
absolute power cannot be determined. Sources are also pair-
wise statistically independent:

RS 5 I n. [7]

Time-shifted source signals are statistically independent as
well. This means thatRS(t) is a diagonal matrix. Moreover,
each source must be time correlated so that there is no diagonal
term inRS(t) which is always zero. The noise generated by the
sensors must be time-uncorrelated, pairwise uncorrelated, and
uncorrelated with the sources as well:

RN ~t ! 5 s2I md ~t ! [8]

E@n~t !s* ~t 1 tt !# 5 0 , [9]

whered is the Dirac function ands2 is the noise variance.
The m signals to be detected are linear combinations of the

n sources (m $ n). The size of the separation problem is
reduced ifn linearly independent combinations of themsignals
are determined. Achieving this goal is possible through a
judicious choice of combinations which form a set of normal-
ized and orthogonal vectors. This approach was already pro-
posed (9) in the context of the separation of signals of spin
systems from homonuclear 3D spectra. LetW be the desired
combination matrix, also named the whitening matrix:

RWY 5 In 5 WRY WH 5 WARSAHWH 5 ~WA)(WA!H . [10]

OnceW is found, there must be a unitary matrixU so that
WA 5 U. In the presence of sensor noise, only estimatesŴ
andÛ of W andU can be obtained, because the matrixY is not
experimentally accessible. The source separation is now split
into two subproblems: the search for an estimate of the whit-
ening matrixŴ and for the unitary transformationÛ so that

ŴA 5 Û. [11]

The whitened data matrixŴX must fulfill

RŴX 5 I n. [12]

By diagonalization,RX can be written

RX 5 HDHH [13]

with

D 5 diag~l1, . . . , lm! andH 5 @h1, . . . ,hm# . [14]

If m 5 n, then

Ŵ 5 HD21/2 [15]

because

RŴX 5 D21/2HH z HDHH z HD21/2 5 I n. [16]

If m . n, the lowest eigenvalues (ln11, . . . , lm) of RX allow
the noise power to be estimated:

ŝ2 5
1

m 2 n O
i5n11

m

l i . [17]

Setting

l9i 5 l i 2 ŝ2, D9 5 diag~l91, . . . , l9n!, and

H 9 5 @h1, . . . , hn# [18]

gives

Ŵ 5 H *D*21/2. [19]

Another whitening method is described in reference (10).
The matrixÛ is obtained by first considering that

RX ~t ! 5 RY ~t ! for t . 0 [20]
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because of the properties of noise. Then

RŴX ~t ! 5 RŴY ~t ! 5 ŴARS~t !~ŴA !H . [21]

This means thatÛ 5 ŴA is the unitary transformation that
diagonalizesRŴX(t) independently oft, becauseRS(t) is
diagonal. A robust estimation ofÛ is performed by jointly
diagonalizing a set ofRŴX(t) matrices, by means of an algo-
rithm related to the Jacobi diagonalization method. The matrix
Û is built as a product of elementary complex-valued rotation
matrices named Givens matrices. Details may be found in
reference (8). The simplest choice of thet values is 1, 2, 3, . . . .
A better choice is possible if some prior knowledge of the time
correlation properties of the sources is available.

The mixing matrix is then determined as the estimate

Â 5 Ŵ #Û [22]

whereŴ# is the pseudo-inverse ofŴ. An estimation of the
source signals is finally achieved, considering that

Â Ŝ 5 X 5 RX RX
21X 5 Â ÂHRX

21X , [23]

and therefore

Ŝ 5 ÂHRX
21X . [24]

The whole process can be summarized as follows:

1. Estimation ofŴ by diagonalization ofRX.
2. Computation of a set ofRŴX(t) matrices.
3. Evaluation ofÛ that jointly diagonalizes the set.
4. Estimation of the mixing matrix:Â 5 Ŵ#Û.
5. Estimation of the source signals:Ŝ 5 ÂHRX

21X.

The 13C NMR spectroscopy provides time-domain signals
possessing the required qualities to be submitted to source
separation by means of the SOBI algorithm. The orthogonality
constraint expressed in Eq. [7] for the sources is fulfilled when
the spectra of the components to be separated do not overlap
significantly. The13C resonance lines are generally narrow

enough to limit the probability of exact peak superimposition.
The thermal noise recorded by the spectrometers is supposed to
have good properties (Eqs. [8] and [9]). The modeling of NMR
time-domain signals as sums of decaying exponential functions
proves their time-correlation property. The linear mixing
model (Eq. [4]) is correct for physical mixtures of components
if there is no significant chemical shift change due to intra- or
intermolecular interactions. This last point is probably the most
questionable, as discussed below.

Two applications of blind source separation to spectra of
mixtures of chemicals will be presented, in 1D and 2D NMR
spectroscopy. The first example deals with the isomerization of
a-glucose intob-glucose in D2O. Crystallizeda-glucose (10
mg) was dissolved in 1 mL D2O. After 90 min a series of 20
13C FIDs were acquired. The acquisition time was 5 min and
was followed by a 10 min delay. Five time-domain signals
were built by coadding FIDs by groups of four consecutive
records. The corresponding spectra are presented in Fig. 1a.
The time evolution ofa-glucose intob-glucose is visible, even
though the changes are not dramatic. The numbern of sources
was set to 2. The SOBI algorithm produces time-domain data,
whose Fourier transforms are presented in Fig. 1b. The top and
bottom traces are the13C NMR spectra ofa-glucose and
b-glucose, respectively. These spectra are difficult to obtain in
a ‘‘pure state,’’ as isomerization takes place as soon as the
compounds are in solution. In this context, blind source sepa-
ration is used as a generalized and automatic way of perform-
ing difference spectroscopy. Some defects are visible, espe-
cially in the spectrum ofb-glucose. Dispersion-like signals
arise from small frequency glitches of resonance lines due to
concentration effects. The SOBI algorithm takes as parameters
the time lags required for the computation of covariance ma-
trices. The default choice proposed by the authors of the
algorithm was taken astt 5 t1, t2, t3, and t4. Different condi-
tions do not bring any significantly better results.

The example in Fig. 1 shows that the separation seems to
cause a degradation of signal-to-noise ratio in the separated
spectra. This effect can be analyzed on a very simple example.
Two signals are combined to provide two mixtures of close
composition according to the mixing matrix

A 5 F 1 1 e 1
1 1 1 e G . [25]

The detection process introduces noise of identical levels into
both recorded signals. The separation is achieved by applica-
tion of the matrix

A21 5
1

2e F 1 21
21 1 G [26]

given at the first order of approximation whene is small. The
noise level after separation is proportional to 1/e, and therefore

FIG. 2. The structures of sorbitol (a), mannitol (b), and xylitol (c).
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FIG. 3. (a) The HSQC spectra of three mixtures of sorbitol, mannitol, and xylitol in D2O. Their relative proportions are about 1/1/1 (top), 1/1.2/1 (middle),
1/1/1.2 (bottom), respectively. Spectral widths are 20 ppm and 1 ppm, numbers of points in the time domain are 512 and 1024, and sizes of the spectra are 2048
and 1024 in dimensions 1 and 2, respectively. Linear prediction is applied inF1. Four scans resulting in 90 min acquisition times were used for each spectrum.
(b) The separated HSQC spectra of the components of the mixtures.
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the SNR of the separated signals varies likee. Thus, at the
extreme limit where the mixtures have the same composition (e
5 0), separation cannot be achieved. In Fig. 1a, the kinetics of
the reaction do not make important changes in the intensities of
the resonance lines. This causes the observed low SNR of the
spectra in Fig. 1b.

The second application deals with the separation of the
gradient enhanced HSQC (11) spectra of three mixtures of
three compounds, sorbitol, mannitol, and xylitol, in D2O (see
Figs. 2 and 3a) at concentrations in the range 40–60 mM. The
advantage of considering 2D NMR techniques for blind source
separation is the spreading of information into a 2D plane
instead of a 1D axis. The possibilities of signal overlap are
lower and therefore the requirement of signals orthogonality is
easier to meet.

The SOBI algorithm was designed to deal with 1D time
domain signals. Therefore, some pre- and postprocessing must
be performed. In a first attempt rectangular zones were defined
around the peaks; their content was collected line by line and
put all together on a single row in a precise order. The 1D
pseudo spectra thus obtained were subjected to an inverse
Fourier transformation to form three 1D pseudo FIDs. They
contain the relevant information of the 2D spectra but in a more
compact form. After separation of the pseudo FIDs, Fourier
transformation, and reconstruction of three 2D data sets, the
result was disappointing. A closer look at the three regular 1D
spectra showed that resonance frequencies for a given nucleus
may appear shifted by many times the linewidth. It is clearly
impossible to achieve separations in this context.

Supplementary steps were added to the processing in order
to cope with the frequency shift of the peaks. Thus, the spectra
were integrated over the rectangular zones. The pseudo 1D
spectra were built as vectors whose components are the integral
values. The separation was then performed on the inverse
Fourier transforms of these ‘‘integral spectra.’’ The Fourier
transforms of the separated pseudo FIDs yield the integral
values of the separated spectra. During the reconstruction of
the 2D spectra, each zone receives the data of the peak from the
original 2D spectrum with the highest integral. The peak is
then scaled so that its integral takes the value given by the
corresponding point in the integral spectrum.

The result is presented in Fig. 3b. Parameters for SOBI were
set as in the 1D example. The projections of the 2D spectra
illustrate the quality of the separation. In the spectrum of
sorbitol (top), small unwanted peaks appear. They are mainly
due to overlapping peak extensions caused by temperature
fluctuations. The latter arise from the heating of the water

solution by the heteronuclear decoupling pulse sequence. Pro-
jections along theF1 axis are the sum of matrix columns. The
peak intensities in these projections reflect rather well the
number of attached protons: 1/1/1/1/2/2 for the nonsymmetri-
cal sorbitol, 1/1/2 and 2/1/4 for the symmetrical mannitol and
xylitol.

Spectra were recorded on a Bruker DRX 500 spectrometer.
Standard acquisition programs were used: zgdc and inviedgptp
for the 1D and 2D spectra, respectively. The SOBI algorithm
was provided by the author of reference (8) as a MATLAB
(The MathWorks, Inc.) code. Basic processing was performed
using xwinnmr and routines written in C language.

Blind source separation provides a useful tool for mixture
analysis by NMR. The concept of a mixture itself can be
extended to spectral editing. For example, a series of DEPT
(12) spectra can be considered as the13C spectra of CH, CH2,
and CH3 subunits of a molecule, appearing with intensities
modulated by the angle of the read pulse. In this context there
are no frequency shift problems because all the signals come
from the same sample. The same principle holds for the inter-
pretation of DOSY spectra. These applications are under de-
velopment and involve the quantitative aspect contained in the
mixing matrix A.
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