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The concept of blind source separation is described and exam- cepts as such neural network®),(contrast functions3; 4),
ples of its use in 1D and 2D NMR spectroscopy are presented. The  maximum likelihood §), and problem deflation6j were in-
goal of this data processing method is to extract the spectra of \glyved in algorithms presenting various advantages as well ;
components molecules when only mixtures are available. © 1998 drawbacks. The algorithms are designed to perform either :
AcademicPress . o adaptative T) or a block processing. One of these algorithms
s e;erﬁt\i/gr?;rgzé Orzgtour:jee ragt"’:gz't?&;'gga:\ﬂgfess'ng' blind source SQBI (second order blind id.entificatic.)n), was designed to de:

with temporally correlated signals. It is based on second-ord
statistical analysis and has proved to be robust in the context

There are numerous situations in which pure chemical coffQiSy, nonstationary signals. Its principle is presented heree
pounds are not available for liquid state analysis by NM€r details on performances and theoretical justifications cz

spectroscopy. Because of this, new techniques which analefound in referencesy. _
mixtures need to be developed. Traditional mixture analysisSOUrce separation by the SOBI algorithm resorts to prope
addresses two main problems: the identification and the qud§s Of the covariance matrix of time-dependent vector func
tification of the components present in the mixture. IdentificdOns- A functionx;(t), 1 =i = m, sampled at time (0 = k =
tion proceeds in most cases by matching the mixture’s spectfar 1: to = 0) is represented by a matiiso thatx;, = x;(t)-
information with a library of reference compounds. The and"€ covariance matriR,(r) is defined by
lytical performance is thus strongly dependent on the library’s
content. A problem related to mixture analysis is the identifi-
cation of components from a collection of spectral data of
mixtures with unknown compositions. Such physical mixtures
may be produced by a chromatographic or any other separatjgn
process. It seems intuitively reasonable that if one gets at least
as many linearly independent spectra of mixtures as there are T-1-7
individual components, then it is possible to separate their [Rx(7)]; = = > XX ke [2]
spectra. This communication aims to show how the concept of k=0
blind source separation helps to achieve this goal. Blind source
separation was developed in the context of multisources mul-
tisensors data processing. A set of sensors receives signaf3n autocovariance matriRy(0) is denotecRy. Let C be a
from sources, but with intensities depending on their relativgatrix with m columns, andC" its Hermitian conjugate. The
positions. The data analysis yields the source signals and Bfeperty
mixing coefficients.

Various approaches to the problem were undertaken. The
difficulty lies in finding a criterion of independence between
the separated signals. The employed criteria are mainly based
on the second- and/or fourth-order signal mometjs Con-

Rx (1) = E[X(O)x* (t + t.)] (1]

Rex (1) = CRX(T)CH [3]

will be used to handle covariance matrices.
Source mixing is considered a linear process in which n
1 To whom correspondence should be addressed. propagation lag is introduced:
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n Ruwy = In = WRyWH = WARAPWH = (WA)(WA)". [10]
yi(t) =2 a;s(t) or Y =AS (4]
j=1 OnceW is found, there must be a unitary mattix so that
WA = U. In the presence of sensor noise, only estimaltes
if n sourcess are present. Signal mixtures are detected by andU of W andU can be obtained, because the malfiis not
sensors and noise is introduced in the detected signdlstX experimentally accessible. The source separation is now s
be the matrix of the measurements, into two subproblems: the search for an estimate of the whi
ening matrixW and for the unitary transformatiod so that

X=Y+N or X=AS+N, [5]
WA = 0. [11]
whereN is the noise matrix and is the mixing matrix. Signal
samples, noise, and mixing coefficients are complex numbeFfie whitened data matri¥X must fulfill
Blind source separation consists in findd@ndS with only
X as input. The problem is largely underdetermined. The Rywx = In. [12]
definition of X can be rewritten as
By diagonalizationRy can be written

n

ai. — H
X0 = 2 Ly () +ni(o). [6] Ry = HAH [13]
j=1
with
The sources are thus only defined as relative values. A change )
of indexesj by permutation does not change There is no = diagAy, ..., Ap) @andH = [hy, ... by ] [14]

way of labeling the sources unambiguously.
The source separation algorithm SOBI imposes constraittan = n, then
on the sources and the noise. The power of the sources is

supposed to be normalized. This is not a restriction, as their W = HA 12 [15]
absolute power cannot be determined. Sources are also pair-
wise statistically independent: because

Rs= I,. 7] Rix = A H"-HAH"-HA 2 =, [16]
Time-shifted source signals are statistically independent gn > n, the lowest eigenvaluea(, ;, . . ., A,) of Ry allow

well. This means thaRg(7) is a diagonal matrix. Moreover, the noise power to be estimated:
each source must be time correlated so that there is no diagonal
term inRg(7) which is always zero. The noise generated by the

sensors must be time-uncorrelated, pairwise uncorrelated, and o= E A [17]
uncorrelated with the sources as well: i=n+1
Ry (1) = 021,,8(7) [8] Setting
3 — ~ .
Eln(t)s(t+t)]=0, [l AM=\—0c% A =diagAj, ...,A},), and
where$ is the Dirac function and? is the noise variance. H"=T[hy, ..., hy] (18]

The m signals to be detected are linear combinations of the
n sources iy = n). The size of the separation problem igives
reduced ifn linearly independent combinations of thesignals "
are determined. Achieving this goal is possible through a w
judicious choice of combinations which form a set of normal-
ized and orthogonal vectors. This approach was already pfgiother whitening method is described in referent@).(
posed ) in the context of the separation of signals of spin The matrixU is obtained by first considering that
systems from homonuclear 3D spectra. Wétbe the desired
combination matrix, also named the whitening matrix: Ry(7) = Ry(7) fort>0 [20]

= H'A2 [19]
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——OH HO— enough to limit the probability of exact peak superimposition
OH The thermal noise recorded by the spectrometers is supposec
. have good properties (Egs. [8] and [9]). The modeling of NMF
HO—— HO— time-domain signals as sums of decaying exponential functiol
HO— proves their time-correlation property. The linear mixing
L on model (Eqg. [4]) is correct for physical mixtures of component:
——OH ——OH if there is no significant chemical shift change due to intra- o
—OH intermolecular interactions. This last point is probably the mos
questionable, as discussed below.

a b c Two applications of blind source separation to spectra ¢
FIG. 2. The structures of sorbitol (a), mannitol (b), and xylitol (c). mixtures of chemlcgls will be presented', n lp and 2.D NMR
spectroscopy. The first example deals with the isomerization
a-glucose intoB-glucose in BO. Crystallizeda-glucose (10
mg) was dissolved in 1 mL fD. After 90 min a series of 20
13C FIDs were acquired. The acquisition time was 5 min an

R. — R — WAR WA o1] Was followed by a 10 min delay. Five time-domain signal:
ix () = R (7) s((WA) [21] were built by coadding FIDs by groups of four consecutive
This means thatl = WA is the unitary transformation thatreCOrds. The corresponding spectra are presented in Fig.

. i . . The time evolution of-glucose intg3-glucose is visible, even
diagonalizesR;« (1) independently ofr, becauseRg(7) is .

: L ~7 e though the changes are not dramatic. The numtzdrsources
diagonal. A robust estimation dl is performed by jointly h lqorith . )
diagonalizing a set dR; (1) matrices, by means of an algo—Was set to 2 The SOBI algorithm produges t'|me-doma|n dat

WX ' whose Fourier transforms are presented in Fig. 1b. The top a

rithm related to the Jacobi diagonalization method. The matrt%ttom traces are th&C NMR spectra ofe-glucose and

U is built as a product of elementary complex-valued rotatio -glucose, respectively. These spectra are difficult to obtain |

matrices named Givens matrices. Details may be found 'in; N : o

: . . a “pure state,” as isomerization takes place as soon as tt
reference §). The simplest choice of thevaluesis 1, 2, 3.... . : : . |
compounds are in solution. In this context, blind source sep:

A better choice is possible if some prior knowledge of the time_. " : :
. ) . . ration is used as a generalized and automatic way of perforr
correlation properties of the sources is available.

The mixing matrix is then determined as the estimate ir)g difference spectroscopy. Some dgfects'are'visiblle, est
cially in the spectrum of3-glucose. Dispersion-like signals

o arise from small frequency glitches of resonance lines due |
A =wW"U [22]  concentration effects. The SOBI algorithm takes as paramete

R R the time lags required for the computation of covariance me
whereW* is the pseudo-inverse a. An estimation of the trices. The default choice proposed by the authors of th

——OH ——OH

——OH ——OH

because of the properties of noise. Then

source signals is finally achieved, considering that algorithm was taken a = t,, t,, t5, andt,. Different condi-
tions do not bring any significantly better results.
AS =X = RyR¢'X = AA"R X, [23] The example in Fig. 1 shows that the separation seems
cause a degradation of signal-to-noise ratio in the separat
and therefore spectra. This effect can be analyzed on a very simple examp
. Two signals are combined to provide two mixtures of clos
S=A"R,'X. [24]  composition according to the mixing matrix
The whole process can be summarized as follows: 1+e 1
1. Estimation ofW by diagonalization oRy. A [ 1 1+e ] [23]
2. Computation of a set d®;x(7) matrices.
3. Evaluation ofU that jointly diagonalizes the set. The detection process introduces noise of identical levels in
4. Estimation of the mixing matrixA = W*U. both recorded signals. The separation is achieved by applic
5. Estimation of the source signas:= A"R;X. tion of the matrix
The *C NMR spectroscopy provides time-domain signals
possessing the required qualities to be submitted to source Al= i[ 11 } [26]
separation by means of the SOBI algorithm. The orthogonality 2e| -1 1

constraint expressed in Eq. [7] for the sources is fulfilled when
the spectra of the components to be separated do not ovedagen at the first order of approximation wheris small. The
significantly. The3C resonance lines are generally narrowoise level after separation is proportional te, Aind therefore
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FIG. 3. (a) The HSQC spectra of three mixtures of sorbitol, mannitol, and xylitolj@.O"heir relative proportions are about 1/1/1 (top), 1/1.2/1 (middle)
1/1/1.2 (bottom), respectively. Spectral widths are 20 ppm and 1 ppm, numbers of points in the time domain are 512 and 1024, and sizes of the spectra
and 1024 in dimensions 1 and 2, respectively. Linear prediction is applied four scans resulting in 90 min acquisition times were used for each spectru
(b) The separated HSQC spectra of the components of the mixtures.
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the SNR of the separated signals varies l&keThus, at the solution by the heteronuclear decoupling pulse sequence. P
extreme limit where the mixtures have the same compositionjéctions along thd-; axis are the sum of matrix columns. The
= 0), separation cannot be achieved. In Fig. 1a, the kineticspak intensities in these projections reflect rather well th
the reaction do not make important changes in the intensitiessoimber of attached protons: 1/1/1/1/2/2 for the nonsymmetr
the resonance lines. This causes the observed low SNR of thésorbitol, 1/1/2 and 2/1/4 for the symmetrical mannitol an
spectra in Fig. 1b. xylitol.

The second application deals with the separation of theSpectra were recorded on a Bruker DRX 500 spectrometse
gradient enhanced HSQQ1) spectra of three mixtures of Standard acquisition programs were used: zgdc and inviedgf
three compounds, sorbitol, mannitol, and xylitol, ind(see for the 1D and 2D spectra, respectively. The SOBI algorithr
Figs. 2 and 3a) at concentrations in the range 40—60 mM. Thas provided by the author of referend® @s a MATLAB
advantage of considering 2D NMR techniques for blind sour¢&he MathWorks, Inc.) code. Basic processing was performe
separation is the spreading of information into a 2D planesing xwinnmr and routines written in C language.
instead of a 1D axis. The possibilities of signal overlap are Blind source separation provides a useful tool for mixture
lower and therefore the requirement of signals orthogonalityasalysis by NMR. The concept of a mixture itself can be
easier to meet. extended to spectral editing. For example, a series of DEF

The SOBI algorithm was designed to deal with 1D timél2) spectra can be considered as @ spectra of CH, CH
domain signals. Therefore, some pre- and postprocessing marel CH; subunits of a molecule, appearing with intensities
be performed. In a first attempt rectangular zones were defimaddulated by the angle of the read pulse. In this context the
around the peaks; their content was collected line by line aate no frequency shift problems because all the signals cor
put all together on a single row in a precise order. The 1fbom the same sample. The same principle holds for the inte
pseudo spectra thus obtained were subjected to an invepsetation of DOSY spectra. These applications are under d
Fourier transformation to form three 1D pseudo FIDs. Theyelopment and involve the quantitative aspect contained in tt
contain the relevant information of the 2D spectra but in a moneixing matrix A.
compact form. After separation of the pseudo FIDs, Fourier
transformation, and reconstruction of three 2D data sets, the ACKNOWLEDGMENT
result was disappointing. A closer look at the three regular 1D
spectra showed that resonance frequencies for a given nucle$sB. thanks the Deartement de la Marne (France) for financial support.
may appear shifted by many times the linewidth. It is clearly
impossible to achieve separations in this context. REFERENCES
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